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Towards getting the full-scale solutions to particle-laden flows, a multidirect forcing technique and im-
mersed boundary method are proposed in the present work. The immersed solid boundary is represented by
Lagrangian points and the no-slip condition is efficiently satisfied by exerting multidirect forcing. The hydro-
dynamic interactions between the stationary or moving solid boundary and the Newtonian fluid are able to be
accurately described. This method is simple but efficient which is validated by simulating the flows around a
stationary circular disc at different Reynolds numbers and the free sedimentation of a particle. The predicted
results agree well with previous experimental and numerical data. When applying this method to study particle
sedimentation near a vertical wall, the rotation shifting phenomenon is observed besides the anomalous rolling
and the lateral migration.
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I. INTRODUCTION

Particle-laden flows exist widely both in nature and in
engineering application systems, such as drop of rain droplet
in air, sedimentation of aerosol in atmosphere, snow and dust
storms, as well as powder transport, spray combustion, and
gas-solid or liquid-solid fluidized beds, and many more. Be-
cause of its great importance, the problem has attracted both
physicists and engineers to develop reliable theory and
model to predict the motions of dispersed particles in various
flows �1–3�.

Traditionally, the theoretical analysis or numerical simu-
lation of particle-laden flows is mainly based on the assump-
tion that the particle size is small enough, thus the particle
can be regarded as a mass point and the effects of particle
size on the flows are neglected. This assumption is available
for so many cases that it has been extensively applied in
numerous studies in the past decades �4–8�. Even in the tra-
ditional direct numerical simulation �DNS� of multiphase
flows, the point-particle assumption is also used and the
force is often modeled by Stokes or modified drag law. How-
ever, this assumption is invalid in some conditions where the
particle volume is dominant, such as slurries, fluidized beds,
sedimentations, and suspensions.

To overcome this problem, various modern DNS methods
have been developed in the recent 15 years. In modern DNS
methods, the particle is considered as real finite volume and
the hydrodynamic interactions are accurately calculated by
integrating the viscosity and pressure forces imposed by sur-
rounding fluid. No empirical model is introduced and the fine
structures around the particles can also be captured. From
this point of view, this level DNS is the fully resolved or
DNS of multiphase flows with full-scale solutions. Hu and
co-workers �9,10� proposed the boundary fitted techniques
based on unstructured and adapting mesh to simulate fluid-
particle motions. To avoid the time-consuming remeshing, a
series of methods based on fixed Cartesian grid were also put
forward. Ladd �11,12� successfully applied the lattice Boltz-

mann method �LBM� to simulate particle-fluid suspensions.
Kalthoff et al. �13� proposed the method that incorporates
analytical solutions for the region near the particle surface,
with some parameters determined by matching the outer flow
conditions. Glowinski et al. �14� presented a distributed
Lagrange multiplier–fictitious domain method �DLM-FD�
for particulate flows. Kuttech �15� presented the Stokesian
dynamics simulation �SDS� method to study the properties of
suspensions of nonspherical particles. For liquid-liquid or
gas-liquid two-phase flows, the level set method �16� and the
front tracking method �17� have also been presented.

Especially, the immersed boundary method �IB method�,
originally developed by Peskin �18�, has attracted consider-
able interest recently �19�. In the IB method, the solid bound-
aries immersed in the fluid are normally represented by a set
of Lagrangian boundary points that are advected by the fluid-
solid interactions. Goldstein et al. �20� used the so-called
adaptive or feedback forcing scheme to model the no-slip
conditions on a stationary boundary. This technique necessi-
tates the use of two free parameters that must be chosen,
based on the flow conditions. Hofler and Schwarzer �21� pre-
sented a finite-difference method for particle-laden flows by
adding a constraint force into the Navier-Stokes equations to
enforce rigid particle motions, with the constraint force being
determined by a penalty method. Kajishima �22� investigated
the particulate flows interactions via introducing the volume-
weighted average velocity close to the solid-fluid interface.
Nakayama and Yamamoto �23� presented a modified compu-
tational method to resolve hydrodynamic interactions in col-
loidal dispersions. The boundaries between solid particles
and fluid are replaced with a continuous interface by assum-
ing a smoothed profile. Yang and Mao �24� presented a mir-
ror fluid method for simulating solid-fluid two-phase flow.
The boundary condition is enforced implicitly on solid-fluid
surface segments by mirror relations. Different from the
above methods, Fadlun et al. �25� introduced direct forcing
�26� to calculate the interactions between immersed bound-
ary and fluid. The velocity at the points which are close to
the immersed boundary is simply set at every time step. It
looks like applying an equivalent forcing term to the Navier-
Stokes equations. Compared with the feedback forcing, the
direct forcing IB method is more general because the com-*Corresponding author. fanjr@zju.edu.cn
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putation no longer suffers the stability limitation and no em-
pirical constants are needed as in Goldstein et al.’s �20�
scheme. However, the formulation of direct forcing is based
on a single Lagrangian point and when applying direct forc-
ing to a group of interactional Lagrangian points, the veloc-
ity on the Lagrangian point at the immersed boundary may
not effectively satisfy the no-slip boundary condition due to
the mutual influence of the direct forcing at the neighboring
points through the interpolation or extrapolation scheme or
the Dirac delta function, which is also one of the greatest
challenges in the above modern DNS methods for particle-
laden flows with full-scale solutions.

Towards the DNS of particle-laden flows with full-scale
solutions, an improved IB method, the multidirect forcing IB
method is presented in the study based on the basic idea of
direct forcing �25,26�. The difference from previous direct-
forcing methods is in the multiple application of direct forc-
ing to obtain the better result. By using this method, the
velocity at the immersed boundary is able to satisfy the no-
slip boundary condition immediately and accurately. It is
validated by simulating the flow around a circular disc and
the free sedimentation of a particle. The method is also ex-
tended to investigate particle sedimentation near a vertical
wall. Some microcosmic phenomena are successfully ob-
served.

The paper is organized as follows. Section II is the nu-
merical method which includes the governing equations, the
basic formation of direct forcing, and the proposed multidi-
rect forcing scheme. The validations of the multidirect forc-
ing scheme are demonstrated in Sec. III. Section IV is about
the application to particle sedimentation near a vertical wall
and Sec. V is devoted to the summary.

II. NUMERICAL METHOD

A. Governing equations

Consider a flow comprised of viscous incompressible
fluid immersed with dispersed particles. The nondimensional
governing equations for the fluid read

� · u = 0, �1�

�u

�t
+ u · �u = − �P +

1

Re
�2u + f , �2�

where u is the velocity of fluid, P is the pressure, Re is the
Reynolds number, and f is the body force exerted on the fluid
by the immersed particles and will be described in detail in
the following, Secs. II B and II C sections. These equations
are enforced throughout the entire computational domain �,
comprising the actual fluid domain � f and the space �p oc-
cupied by Np immersed solid particles.

In order to impose the restrained conditions on the space
�p occupied by particles, one needs to describe the motion
of the immersed particles under the action of gravity and
hydrodynamic forces. The motion of a solid particle is gov-
erned by Newton’s equations for the linear, angular momen-
tum, and transportation of a rigid body as follows:

d�mpvc�
dt

= F + gp, �3�

dxc

dt
= vc, �4�

d�Ip · �p�
dt

= T , �5�

d�p

dt
= �p, �6�

where mp, vc, xc, Ip, �p, �p are the mass, the velocity of the
center of mass, the position of the center of mass, the inertia
tensor, the angular velocity, and the angular orientation of the
particle; F and T represent the hydrodynamic force and
torque acting upon the particle by the fluid; gp is the gravity
force.

To solve the above governing equations, the spatial de-
rivatives are discretized using the fourth-order compact finite
difference scheme �27� and the four-step-four-order Runge-
Kutta marching scheme �28� is used for time integration.

B. Direct forcing scheme

In IB methods, the fixed Cartesian coordinates and the
discretized Lagrangian points uniformly distributed over the
immersed boundary are often used. In the direct forcing
scheme �25,26�, for the Lagrangian point xk at the immersed
boundary, a forcing Fk�xk� is imposed to make the local ve-
locity obtained from Eulerian location equal to the desired
velocity, i.e., the actual velocity of the Lagrangian point at
the immersed boundary up=vc+�p�xk−xc�, which can let
the velocity on the Lagrangian point satisfy the no-slip
boundary condition. The forcing Fk�xk� can be determined as
follows.

From Eq. �2�, one can get

f =
�u

�t
+ u · �u + �P −

1

Re
�2u =

�u

�t
+ R =

un+1 − un

�t
+ R ,

�7�

where n represents the time level and R=u ·�u+�P
− 1

Re�2u. Then

Fk�xk� =
uk

n+1 − uk
n

�t
+ R =

uk
n+1 − ûk

�t
+

ûk − uk
n

�t
+ R

=
up

n+1 − ûk

�t
, �8�

where ûk is a temporary velocity which satisfies the momen-
tum equation, that is,

ûk − uk
n

�t
+ R = 0. �9�

Under the effect of the forcing, the velocity on the La-
grangian point xk at the n+1 time level uk

n+1 can be modified
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to the desired velocity up
n+1. The forcing is direct in the sense

that the desired value of velocity is imposed directly on the
boundary without any dynamical process �25� and the forc-
ing is based upon the law of conservation �29�.

To spread the quantities between Eulerian grids and La-
grangian points, the discrete delta function provided by Grif-
fith and Peskin �30� is applied in the present study. The tem-
porary velocity on the Lagrangian point at the immersed
boundary xk is obtained from its surrounding Eulerian grids
x,

ûk = �
x��

û · �h�xk − x� · h2, �10�

where û is the temporary velocity on the Eulerian grids
which satisfies Eq. �9� and

�h�x − xk� =
1

h2dh� x − xk

h
�dh� y − yk

h
� , �11�

where x= �x ,y�, xk= �xk ,yk�, h is the Eulerian mesh size, and

dh�r� =�
1

8
�3 − 2	r	 + 
1 + 4	r	 − 4r2� 0 � 	r	 � 1

1

8
�5 − 2	r	 − 
− 7 + 12	r	 − 4r2� 1 � 	r	 � 2

0 2 � 	r	 .
�12�

Thus the body force in Eq. �2� or the effect of the forcing
on the Lagrangian points spreading into the Eulerian grids f
can be expressed as

f =� Fk�xk� · ��x − xk�dxk = �
k=1

N

Fk�xk� · �h�x − xk� · �Vk,

�13�

where N is the number of the Lagrangian points set at the
immersed boundary and �Vk is the discrete volume for each
Lagrangian point �31�.

Based on the above direct-forcing scheme and immersed
boundary method, the hydrodynamic force and the torque
exerted on a moving particle can be expressed as

F = − �
1

N

Fk�xk�ds = − �
�

f�x�dx = − �
x��

f�x�h2, �14�

T = − �
1

N

�xk − xc� � Fk�xk�ds

= − �
�

�x − xc� � f�x�dx

= − �
x��

�x − xc� � f�x�h2. �15�

When spreading the effect of the forcing from Lagrangian
points to Eulerian nodes with the direct forcing scheme, the
force acted on the Lagrangian point which contains the de-
sired velocity up

n+1 should be calculated by using Eq. �8�.

However, the desired velocity at n+1 time level up
n+1 is un-

known. A simple way to deal with it is applying a one-order
explicit scheme with up

n instead of up
n+1 �22�. For the sake of

convenience, we also use this explicit scheme in the present
study. Then the force exerted on the Lagrangian point at the
immersed boundary should be changed as

Fk�xk� =
up

n+1 − ûk

�t
�

up
n − ûk

�t
. �16�

C. Multidirect forcing scheme

The above direct forcing exerted on the Lagrangian point
xk can gradually modify the computational velocity ûk to the
desired velocity up. However, when spreading the effect of
forcing from the Lagrangian points to the Eulerian grids,
different schemes of discrete delta function can lead to dif-
ferent results, as demonstrated by Griffith and Peskin �30�.
Furthermore, the velocities on the Lagrangian points may not
satisfy the no-slip boundary condition very well during the
process of interpolation to obtain the simulated velocity on
the Lagrangian points and extrapolation to spread the forcing
effect to its surrounding Eulerian grids. Therefore a multidi-
rect forcing technique is proposed and described below.

By solving the above equations, one can get the velocity
of the whole flow field u1

n+1 where n+1 is the time level and
the subscript 1 represents exerting the direct forcing for the
first time. Then the velocity on the Lagrangian point is

ûk
1 = � u1

n+1 · ��xk − x� · h2. �17�

The best result is ûk
1=up, but always ûk

1�up. Although the
velocity at the immersed boundary can get very close to the
desired velocity after a long period of time, the no-slip
boundary condition is still not satisfied very well. This situ-
ation can be changed by applying the direct forcing for the
second time which makes

Fk
2�xk� =

up − ûk
1

�t
. �18�

Then the forcing spreads from Lagrangian points to Eulerian
grids through the Dirac-delta function

f2 = �
k=1

N

Fk
2�xk� · ��x − xk� · �Vk. �19�

After exerting the direct forcing for the second time, the
velocity of the whole flow field becomes

u2
n+1 = u1

n+1 + f2 · �t . �20�

Thus the velocity on the Lagrangian point at the immersed
boundary becomes

ûk
2 = � u2

n+1 · ��xk − x� · h2. �21�

The value of ûk
2 is expected to be closer to the desired

velocity up than that of ûk
1. The velocity at the immersed

boundary can get very close to the desired velocity after this
procedure is applied several times during one time step. The
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total force exerting on each Lagrangian point Fk�xk� is the
sum of the forcing exerting on each Lagrangian point for the
whole m times, that is

Fk�xk� = �
i=1

m

Fk
i �xk� . �22�

Then the body force in Eq. �2�, f, can be expressed as

f =� Fk�xk� · ��x − xk�dxk

= �
k=1

N ��
i=1

m

Fk
i �xk�� · �h�x − xk� · �Vk. �23�

This multidirect forcing scheme faces the fact that the
formulation of direct forcing is based on a single Lagrangian
point and when applying direct forcing on a group of inter-
actional Lagrangian points and spreading the effect of forc-
ing to Eulerian grids through the interpolation-extrapolation
scheme or the Dirac delta function, the direct forcing will not
be so effective. It can be seem as an explicit iterative process
and the multiple applying direct forcing is different from the
previous direct forcing schemes �25,26,30,31� in which the
direct forcing is applied only once in one time step.

III. VALIDATION OF THE MULTIDIRECT
FORCING SCHEME

A. Flow around a stationary circular disc

To examine the response of the velocity on the immersed
boundary to the time of exerting multidirect forcing, the flow
around a stationary circular disc at a Reynolds number of
100 is first simulated and the l2−norm error of the velocity
on the Lagrangian point with respect to no-slip boundary
condition is defined as a parameter and tracked at every time
step. The l2−norm is expressed as

l2 − norm =

�

k=1

N

��uk − up�2 + �vk − vp�2�

N
, �24�

where the desired velocity at the immersed boundary is up
= �up ,vp�.

A rectangular computational domain is used to simulate
the flow using the immersed boundary method with multidi-
rect forcing. The number of total mesh grids is 1277�767.
The characteristic length is the diameter of the circular disc
and the nondimensional mesh size is h= 1

35. A constant ve-
locity profile U� is specified at the inflow boundary and a
nonreflecting boundary condition �32� is applied at the out-
flow boundary. The Neumann boundary conditions are im-
posed on the other boundaries. 110 Lagrangian points are
uniformly distributed at the immersed boundary to ensure
that the volume controlled by each Lagrangian point is not
greater than that of the Eulerian grid �31�. It should be
pointed out that the number of Lagrangian points in the
present scheme is much less than that in Ref. �33�.

Figure 1 shows the correlation between l2−norm and the
time of direct-forcing m. Here m=1, 2, 4, 6, 10, 20, and 50.

It can be seen that as the number of m increases, the l2
−norm decreases towards zero which is the desired velocity
in the simulation, i.e., up= �up ,vp�= �0,0� for the stationary
circular disc. When m=1, the l2−norm is 0.040 18, which
means that the direct forcing has an effect on modifying the
velocity at the immersed boundary to the desired velocity.
However, this modifying is not satisfactory. When m in-
creases to 20, the value of the l2−norm decreases to 3.32
�10−4. This indicates that the multidirect forcing can make
the velocity at the immersed boundary become closer and
closer to the desired velocity and the no-slip boundary con-
dition is able to be satisfied well. In addition, when the num-
ber of m increases from 1 to 10, the decrease of l2−norm is
faster, but when the number of m exceeds 10, the magnitude
of the l2−norm decreases slowly.

The variation of the l2−norm with different m in the ini-
tial time framework is demonstrated in Fig. 2. As can be
seen, the l2−norm decreases to a very small value immedi-
ately with the increase of the number m, which means that
the no-slip boundary condition at the immersed boundary
can be satisfied in a very short time and the multidirect forc-
ing technique is of higher efficiency.

The streamlines around the circular disc at the time t
=200 with different times of direct forcing are shown in Fig.

100 101 102
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10-3

10-2

10-1

L2-norm
Slope-2
Slope-0.5

m

2l (norm)

10-1

10-2

10-3

10-4
100 101 102

FIG. 1. Correlation between the l2−norm and the time of mul-
tidirect forcing m.
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t
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FIG. 2. Time history of the correlation between the l2−norm and
the time of multidirect forcing m in the initial time framework.
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3. It is clear that the flow structures near the circular disc at
m=1 are totally different from those at m=20. Because the
no-slip boundary condition at the immersed boundary is sat-

isfied inaccurately, the streamline crossing the boundary of
the disc happens at m=1, which is obviously not physical.
But when the number of m is greater than 10, there is not any
streamline that can go through the boundary of the disc and
the structures of flow field at m=10 and 20 become almost
the same. This agrees well with the variation of the l2
−norm presented in Figs. 1 and 2 and indicates that the
present multidirect forcing technique can be used to simulate
such complex flow with high accuracy and efficiency.

Flows past the stationary circular disc at Re=20, 40, 80,
100, and 200 are also simulated under the condition of m
=20 and N=110. The predicted drag coefficient, lift coeffi-
cient, and Strouhal number are compared very well with pre-
vious experimental and numerical data �34–38�. In particular,
the predicted Strouhal numbers for different Reynolds num-
bers are almost the same as those in the experiment of Wil-
liamson �38� as shown in Table I, which also proves the
reliability of the proposed IB method with the multidirect
forcing technique.

B. Free sedimentation of a particle

To further validate the multidirect forcing for simulations
of a moving particle, the free sedimentation of a particle in
the channel is studied. In this case, for convenience of com-
parison, the computational parameters are chosen as the
same as those of Glowinski et al. �14�. The mesh sizes are set
as 1

18 , 1
36 , and 1

64 of the particle diameter Dp and the corre-
sponding computational nodes are 62 785, 249 985, and
788 481, respectively. The multidirect forcing is performed
for m=20 and 57, 114, and 202 Lagrangian points are re-
spectively used at the immersed boundary.

The lP2−norm error of the velocities on the Lagrangian
points at the immersed boundary with respect to the no-slip
boundary condition is defined as follows as a parameter and
tracked at every time step:

lP2 − �norm� =


�
k=1

N

��uk − up�2 + �vk − vp�2�/N


uc�t�2 + vc�t�2 + �0.5��t�Dp�2
when „uc�t�,vc�t�,��t�… � �0,0,0� �25�

where u�t�= (uc�t� ,vc�t�) is the velocity of the mass center of
the particle and ��t� is the angular velocity for the present
two-dimensional flow. This lP2−norm shows the relative er-
ror of the velocity at the immersed boundary with respect to
the no-slip boundary condition.

The time history of lP2−norm for single particle sedimen-
tation under the conditions of 	P=1.25, 
=0.1, and mesh
size h= 1

256 is shown in Fig. 4. The lP2−norm decreases to
1.2�10−5 in a very short time and maintains this lower level
during the whole simulation. This means that the multidirect
forcing scheme can modify the simulated velocity at the im-
mersed moving boundary to closely approach the desired
velocity and the no-slip boundary condition can be satisfied

well. Table II shows the comparison of the maximum
Reynolds number defined as ReMax=Max�Re�t��
=Max�	p
uc�t�2+vc�t�2Dp /
� during the particle settling
with previous related numerical results. It can be found that
the present predicted maximum Reynolds numbers under dif-
ferent mesh sizes are all in good agreement with those of
Glowinski et al. �14� and Wan and Turek �39�.

IV. APPLICATION TO PARTICLE SEDIMENTATION
NEAR A VERTICAL WALL

Particle sedimentations in fluid under various conditions
have been extensively investigated both from experiments
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FIG. 3. �Color online� Streamlines around the circular disc at the
nondimensional time t=200. �a� m=1, �b� m=2, �c� m=4, �d� m
=6, �e� m=10, �f� m=20.
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�40,41� and simulations �42–45�. Some phenomena and
physics are uncovered. On a spherical particle settling near a
flat wall in non-Newtonian fluid, it was found that the par-
ticle moved toward the wall and rotated as if rolling up the
wall which is also being termed as “anomalous rolling” �42�.
In contrast, in a Newtonian fluid at low Reynolds number, a
sphere settling near a wall maintains a constant separation
from it as a consequence of the reversibility of Stokes equa-
tions. The direction of rotation is always in the same sense as
if the sphere were rolling along a dry wall. But if another
vertical wall appears, the direction of rotation can be re-
versed and the anomalous rolling happens under some con-
ditions �46,47�. In order to examine the microcosmic inter-
actions between particle and wall, we use the multidirect
forcing and immersed boundary method to get the full-scale
solutions to the particle sedimentation near a vertical wall
with Newtonian fluid. The computational parameters are
summarized as follows.

�i� The computational domain is �= �0,2�� �0,6� corre-
sponding to a nondimensional domain �0,8�� �0,60�.

�ii� The diameter of the particle is DP=0.25 and the den-
sity is 	P=1.5.

�iii� The center of the particle is located at �0.2, 5� at time
t=0 near the left one of two vertical walls.

�iv� The fluid and the particle are initially at rest.
�v� The fluid density is 	 f =1.00 and the viscous is 


=0.01.
�vi� The mesh size is 1

36 of the particle diameter.
�vii� The evolution of velocity vector of the fluid and

particle position at the initial stage of particle sedimentation

is presented in Fig. 5. It can be observed that the particle
settles along the vertical direction accompanied by the lateral
migration away from the near wall. The vertical sedimenta-
tion and lateral migration of the spherical particle are also
going with the uphill counterclockwise rotation which is also
the so-called anomalous rolling �48�. These phenomena are
similar to those of previous studies �46,49�, but different
from the particle settling near a single wall in Newtonian
fluid and the particle settling near a single or two plane wall
in non-Newtonian fluid. In fact, the rotation direction in the
present simulation is not always counterclockwise, which
will be demonstrated later. The velocity vector of the fluid
shows that the fluid in front of the particle flows upward and

TABLE I. Comparison of the predicted Strouhal number with previous related data for different Reynolds
numbers.

Re Present Xu �36� Silva �29� Lai �34� Su �35� Williamson �expt.� �38�

80 0.153 0.15 0.153 0.15

100 0.166 0.171 0.16 0.165 0.168 0.166

200 0.196 0.202 0.19 0.197

2l (norm)

t

10-4
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2×10-5

0
0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 4. �Color online� Time history of the lP2−norm for single
particle sedimentation under the condition of particle density 	P

=1.25 and fluid viscosity 
=0.1.
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FIG. 5. Evolution of velocity vector of fluid and particle posi-
tion at the initial stage of particle sedimentation under the condition
of particle density 	P=1.5 and fluid viscosity 
=0.01. �a� t
=0.0326, �b� t=0.082 193, �c� t=0.122 944, �d� t=0.157 413, �e� t
=0.189 578, �f� t=0.220 607.
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the fluid behind the particle flows downward. Accordingly,
the wake forms and sheds behind the particle. Furthermore,
the velocity gradient between the near wall and the particle is
larger at the beginning and then decays fast, which may im-
pose an additional effect on particle sedimentation dynamics.

Let us examine the time history of the particle angular
velocity during its sedimentation. In the very beginning time
framework, the particle does not rotates at first, and then
rotates slightly clockwise. This is consistent with previous
experimental and numerical results �42,43,48,50�. But after
t�0.016, the rotation shifting phenomenon happens and the
particle rotates counterclockwise, as shown in Fig. 6�a�. This
rotation shifting event also happens several times in the
whole time framework demonstrated in Fig. 6�b�. Its mecha-
nism is associated with the hydrodynamic interactions be-
tween the particle, the surrounding fluid, and the wall, which
needs to be further explored in future work. The angular
velocity of the particle increases fast at first, but then de-
creases semiperiodically and fluctuates when the particle
settles and moves away from the left wall.

Figure 7 shows the vorticity contour and the particle po-
sition as well as the rotation direction at different times when
the particle settles near the wall. The typical sedimentation
dynamics of a single particle near one wall in a channel with
Newtonian fluid are reproduced. Compared with the particle
settling initially from the middle of the flow field, the vortex
shedding occurs early when the particle settles initially near
one wall. These alternately shedding vertical structures are
expected to be responsible for some microcosmic phenom-
ena, such as rotation shifting. The trajectory of particle sedi-
mentation and its orientation are also depicted in Fig. 7�h�.
One can observe all the prominent phenomena stated above,
such as the lateral migration, the anomalous rolling, and the
rotation shifting. This also indicates that the proposed multi-
direct forcing scheme is reliable to simulate flows immersed
with moving particles with full-scale solutions.

V. SUMMARY

In this study, a multidirect forcing scheme is presented to
calculate the hydrodynamic interactions between the rigid
solid boundary and the Newtonian fluid based on the im-
mersed boundary method. By applying this scheme, the no-
slip condition near the immersed solid boundary is able to be
efficiently satisfied. It is validated by simulations of the
flows around a stationary circular disc at different Reynolds

numbers and the free sedimentation of a particle. The pre-
dicted data agree well with previous experimental and nu-
merical results. This method is also applied to study particle
sedimentation near a vertical wall and some microcosmic
phenomena, such as the rotation shifting, the lateral migra-
tion, and the anomalous rolling, are successfully observed.
This scheme is simple but efficient, and only one parameter,
the time of multidirect forcing, should be determined in the
coupling process.

TABLE II. Comparison of the predicted maximum Reynolds number during the particle sedimentation
with previous related data.

	P=1.25, 
=0.1

Present Glowinski et al. �14� Wan and Turek �39�

h= 1
72 h= 1

144 h= 1
256 h= 1

192 h= 1
256 h= 1

48 h= 1
96
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FIG. 6. Time history of the particle angular velocity for particle
sedimentation near a wall under the condition of particle density
	P=1.5 and fluid viscosity 
=0.01; �a� Very beginning time frame-
work �b�. Whole time framework.
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